389 research outputs found

    Collider signatures of sterile neutrinos in models with a gauge-singlet Higgs

    Get PDF
    Sterile neutrinos have been invoked to explain the observed neutrino masses, but they can also have significant implications for cosmology and accelerator experiments. We explore the collider signatures of a simple extension of the Standard Model, where sterile neutrinos acquire their mass after electroweak symmetry breaking, via their coupling to a real singlet Higgs. In this model, heavy sterile neutrinos can be produced in accelerators from decays of the Higgs bosons. Their own decay can yield distinct signals, suggesting both the presence of an extended Higgs sector and the coupling of the singlet fermions to the latter. In the same scenario, a relic matter abundance arises from the decay of the singlet Higgs into weakly coupled keV sterile neutrinos. The coupling of the Higgs doublet to particles outside the Standard Model relaxes the current experimental bounds on its mass.Comment: v2: JHEP accepted version, 19 pages, 9 figure

    Heavy sterile neutrinos and supernova explosions

    Get PDF
    We consider sterile neutrinos with rest masses ~0.2 GeV. Such sterile neutrinos could augment core collapse supernova shock energies by enhancing energy transport from the core to the vicinity of the shock front. The decay of these neutrinos could produce a flux of very energetic active neutrinos, detectable by future neutrino observations from a galactic supernova. The relevant range of sterile neutrino masses and mixing angles can be probed in future laboratory experiments.Comment: 5 page

    Dark-matter sterile neutrinos in models with a gauge singlet in the Higgs sector

    Full text link
    Sterile neutrino with mass of several keV can be the cosmological dark matter, can explain the observed velocities of pulsars, and can play an important role in the formation of the first stars. We describe the production of sterile neutrinos in a model with an extended Higgs sector, in which the Majorana mass term is generated by the vacuum expectation value of a gauge-singlet Higgs boson. In this model the relic abundance of sterile neutrinos does not necessarily depend on their mixing angles, the free-streaming length can be much smaller than in the case of warm dark matter produced by neutrino oscillations, and, therefore, some of the previously quoted bounds do not apply. The presence of the gauge singlet in the Higgs sector has important implications for the electroweak phase transition, baryogenesis, and the upcoming experiments at the Large Hadron Collider and a Linear Collider.Comment: 12 pages, 7 figure

    Dark Matter's secret liaisons: Phenomenology of a dark U(1) sector with bound states

    Get PDF
    Dark matter (DM) charged under a dark U(1) force appears in many extensions of the Standard Model, and has been invoked to explain anomalies in cosmic-ray data, as well as a self-interacting DM candidate. In this paper, we perform a comprehensive phenomenological analysis of such a model, assuming that the DM abundance arises from the thermal freeze-out of the dark interactions. We include, for the first time, bound-state effects both in the DM production and in the indirect detection signals, and quantify their importance for Fermi, Ams-02, and CMB experiments. We find that DM in the mass range 1 GeV to 100TeV, annihilating into dark photons of MeV to GeV mass, is in conict with observations. Instead, DM annihilation into heavier dark photons is viable. We point out that the late decays of multi-GeV dark photons can produce significant entropy and thus dilute the DM density. This can lower considerably the dark coupling needed to obtain the DM abundance, and in turn relax the existing constraints

    Final-state interactions in the response of nuclear matter

    Get PDF
    Final-state interactions in the response of a many-body system to an external probe delivering large momentum are normally described using the eikonal approximation, for the trajectory of the struck particle, and the frozen approximation, for the positions of the spectators. We propose a generalization of this scheme, in which the initial momentum of the struck particle is explicitly taken into account. Numerical calculations of the nuclear matter response at 1 <q<< |{\bf q}| < 2 GeV/c show that the inclusion of this momentum dependence leads to a sizable effect in the low energy tail. Possible implications for the analysis of existing electron-nucleus scattering data are discussed.Comment: 21 pages, 4 figure

    Co-expression of KLK6 and KLK10 as prognostic factors for survival in pancreatic ductal adenocarcinoma

    Get PDF
    Kallikreins play an important role in tumour microenvironment and as cancer biomarkers in different cancer entities. Previous studies suggested an upregulation of KLK10 and KLK6 in pancreatic ductal adenocarcinoma (PDAC). Therefore, we evaluated the clinicopathological role of these kallikreins and their value as biomarkers in PDAC

    The Effect of the Short-Range Correlations on the Generalized Momentum Distribution in Finite Nuclei

    Full text link
    The effect of dynamical short-range correlations on the generalized momentum distribution n(p,Q)n(\vec{p},\vec{Q}) in the case of Z=NZ=N, \ell-closed shell nuclei is investigated by introducing Jastrow-type correlations in the harmonic-oscillator model. First, a low order approximation is considered and applied to the nucleus 4^4He. Compact analytical expressions are derived and numerical results are presented and the effect of center-of-mass corrections is estimated. Next, an approximation is proposed for n(p,Q)n(\vec{p}, \vec{Q}) of heavier nuclei, that uses the above correlated n(p,Q)n(\vec{p},\vec{Q}) of 4^4He. Results are presented for the nucleus 16^{16}O. It is found that the effect of short-range correlations is significant for rather large values of the momenta pp and/or QQ and should be included, along with center of mass corrections for light nuclei, in a reliable evaluation of n(p,Q)n(\vec{p},\vec{Q}) in the whole domain of pp and QQ.Comment: 29 pages, 8 figures. Further results, figures and discussion for the CM corrections are added. Accepted by Journal of Physics

    Affleck-Dine dynamics and the dark sector of pangenesis

    Full text link
    Pangenesis is the mechanism for jointly producing the visible and dark matter asymmetries via Affleck-Dine dynamics in a baryon-symmetric universe. The baryon-symmetric feature means that the dark asymmetry cancels the visible baryon asymmetry and thus enforces a tight relationship between the visible and dark matter number densities. The purpose of this paper is to analyse the general dynamics of this scenario in more detail and to construct specific models. After reviewing the simple symmetry structure that underpins all baryon-symmetric models, we turn to a detailed analysis of the required Affleck-Dine dynamics. Both gravity-mediated and gauge-mediated supersymmetry breaking are considered, with the messenger scale left arbitrary in the latter, and the viable regions of parameter space are determined. In the gauge-mediated case where gravitinos are light and stable, the regime where they constitute a small fraction of the dark matter density is identified. We discuss the formation of Q-balls, and delineate various regimes in the parameter space of the Affleck-Dine potential with respect to their stability or lifetime and their decay modes. We outline the regions in which Q-ball formation and decay is consistent with successful pangenesis. Examples of viable dark sectors are presented, and constraints are derived from big bang nucleosynthesis, large scale structure formation and the Bullet cluster. Collider signatures and implications for direct dark matter detection experiments are briefly discussed. The following would constitute evidence for pangenesis: supersymmetry, GeV-scale dark matter mass(es) and a Z' boson with a significant invisible width into the dark sector.Comment: 51 pages, 7 figures; v2: minor modifications, comments and references added; v3: minor changes, matches published versio

    Role of Sterile Neutrino Warm Dark Matter in Rhenium and Tritium Beta Decays

    Full text link
    Sterile neutrinos with mass in the range of one to a few keV are important as extensions of the Standard Model of particle physics and are serious dark matter (DM) candidates. This DM mass scale (warm DM) is in agreement with both cosmological and galactic observations. We study the role of a keV sterile neutrino through its mixing with a light active neutrino in Rhenium 187 and Tritium beta decays. We pinpoint the energy spectrum of the beta particle, 0 < T_e < (Q_{beta} - m_s), as the region where a sterile neutrino could be detected and where its mass m_s could be measured. This energy region is at least 1 keV away rom the region suitable to measure the mass of the light active neutrino, located near the endpoint Q_{beta} . The emission of a keV sterile neutrino in a beta decay could show up as a small kink in the spectrum of the emitted beta particle. With this in view, we perform a careful calculation of the Rhenium and Tritium beta spectra and estimate the size of this perturbation by means of the dimensionless ratio R of the sterile neutrino to the active neutrino contributions. We comment on the possibility of searching for sterile neutrino signatures in two experiments which are currently running at present, MARE and KATRIN, focused on the Rhenium 187 and Tritium beta decays respectively.Comment: 16 pages, 10 figures. Version to appear in Nucl. Phys. B. Results and conclusions unchange
    corecore